Copied to
clipboard

G = C42.D5order 160 = 25·5

1st non-split extension by C42 of D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.1D5, C10.7C42, C10.9M4(2), C52C83C4, C53(C8⋊C4), (C4×C20).7C2, C4.19(C4×D5), C20.45(C2×C4), (C2×C20).14C4, (C2×C4).88D10, (C2×C4).2Dic5, C2.3(C4×Dic5), C2.1(C4.Dic5), C22.7(C2×Dic5), (C2×C20).102C22, (C2×C52C8).7C2, (C2×C10).45(C2×C4), SmallGroup(160,10)

Series: Derived Chief Lower central Upper central

C1C10 — C42.D5
C1C5C10C20C2×C20C2×C52C8 — C42.D5
C5C10 — C42.D5
C1C2×C4C42

Generators and relations for C42.D5
 G = < a,b,c,d | a4=b4=c5=1, d2=b, ab=ba, ac=ca, dad-1=ab2, bc=cb, bd=db, dcd-1=c-1 >

2C4
2C4
5C8
5C8
5C8
5C8
2C20
2C20
5C2×C8
5C2×C8
5C8⋊C4

Smallest permutation representation of C42.D5
Regular action on 160 points
Generators in S160
(1 109 159 44)(2 106 160 41)(3 111 153 46)(4 108 154 43)(5 105 155 48)(6 110 156 45)(7 107 157 42)(8 112 158 47)(9 61 86 136)(10 58 87 133)(11 63 88 130)(12 60 81 135)(13 57 82 132)(14 62 83 129)(15 59 84 134)(16 64 85 131)(17 140 148 36)(18 137 149 33)(19 142 150 38)(20 139 151 35)(21 144 152 40)(22 141 145 37)(23 138 146 34)(24 143 147 39)(25 55 65 114)(26 52 66 119)(27 49 67 116)(28 54 68 113)(29 51 69 118)(30 56 70 115)(31 53 71 120)(32 50 72 117)(73 122 103 95)(74 127 104 92)(75 124 97 89)(76 121 98 94)(77 126 99 91)(78 123 100 96)(79 128 101 93)(80 125 102 90)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)(113 115 117 119)(114 116 118 120)(121 123 125 127)(122 124 126 128)(129 131 133 135)(130 132 134 136)(137 139 141 143)(138 140 142 144)(145 147 149 151)(146 148 150 152)(153 155 157 159)(154 156 158 160)
(1 51 132 101 33)(2 34 102 133 52)(3 53 134 103 35)(4 36 104 135 54)(5 55 136 97 37)(6 38 98 129 56)(7 49 130 99 39)(8 40 100 131 50)(9 89 22 105 65)(10 66 106 23 90)(11 91 24 107 67)(12 68 108 17 92)(13 93 18 109 69)(14 70 110 19 94)(15 95 20 111 71)(16 72 112 21 96)(25 86 124 145 48)(26 41 146 125 87)(27 88 126 147 42)(28 43 148 127 81)(29 82 128 149 44)(30 45 150 121 83)(31 84 122 151 46)(32 47 152 123 85)(57 79 137 159 118)(58 119 160 138 80)(59 73 139 153 120)(60 113 154 140 74)(61 75 141 155 114)(62 115 156 142 76)(63 77 143 157 116)(64 117 158 144 78)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,109,159,44)(2,106,160,41)(3,111,153,46)(4,108,154,43)(5,105,155,48)(6,110,156,45)(7,107,157,42)(8,112,158,47)(9,61,86,136)(10,58,87,133)(11,63,88,130)(12,60,81,135)(13,57,82,132)(14,62,83,129)(15,59,84,134)(16,64,85,131)(17,140,148,36)(18,137,149,33)(19,142,150,38)(20,139,151,35)(21,144,152,40)(22,141,145,37)(23,138,146,34)(24,143,147,39)(25,55,65,114)(26,52,66,119)(27,49,67,116)(28,54,68,113)(29,51,69,118)(30,56,70,115)(31,53,71,120)(32,50,72,117)(73,122,103,95)(74,127,104,92)(75,124,97,89)(76,121,98,94)(77,126,99,91)(78,123,100,96)(79,128,101,93)(80,125,102,90), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144)(145,147,149,151)(146,148,150,152)(153,155,157,159)(154,156,158,160), (1,51,132,101,33)(2,34,102,133,52)(3,53,134,103,35)(4,36,104,135,54)(5,55,136,97,37)(6,38,98,129,56)(7,49,130,99,39)(8,40,100,131,50)(9,89,22,105,65)(10,66,106,23,90)(11,91,24,107,67)(12,68,108,17,92)(13,93,18,109,69)(14,70,110,19,94)(15,95,20,111,71)(16,72,112,21,96)(25,86,124,145,48)(26,41,146,125,87)(27,88,126,147,42)(28,43,148,127,81)(29,82,128,149,44)(30,45,150,121,83)(31,84,122,151,46)(32,47,152,123,85)(57,79,137,159,118)(58,119,160,138,80)(59,73,139,153,120)(60,113,154,140,74)(61,75,141,155,114)(62,115,156,142,76)(63,77,143,157,116)(64,117,158,144,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,109,159,44)(2,106,160,41)(3,111,153,46)(4,108,154,43)(5,105,155,48)(6,110,156,45)(7,107,157,42)(8,112,158,47)(9,61,86,136)(10,58,87,133)(11,63,88,130)(12,60,81,135)(13,57,82,132)(14,62,83,129)(15,59,84,134)(16,64,85,131)(17,140,148,36)(18,137,149,33)(19,142,150,38)(20,139,151,35)(21,144,152,40)(22,141,145,37)(23,138,146,34)(24,143,147,39)(25,55,65,114)(26,52,66,119)(27,49,67,116)(28,54,68,113)(29,51,69,118)(30,56,70,115)(31,53,71,120)(32,50,72,117)(73,122,103,95)(74,127,104,92)(75,124,97,89)(76,121,98,94)(77,126,99,91)(78,123,100,96)(79,128,101,93)(80,125,102,90), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144)(145,147,149,151)(146,148,150,152)(153,155,157,159)(154,156,158,160), (1,51,132,101,33)(2,34,102,133,52)(3,53,134,103,35)(4,36,104,135,54)(5,55,136,97,37)(6,38,98,129,56)(7,49,130,99,39)(8,40,100,131,50)(9,89,22,105,65)(10,66,106,23,90)(11,91,24,107,67)(12,68,108,17,92)(13,93,18,109,69)(14,70,110,19,94)(15,95,20,111,71)(16,72,112,21,96)(25,86,124,145,48)(26,41,146,125,87)(27,88,126,147,42)(28,43,148,127,81)(29,82,128,149,44)(30,45,150,121,83)(31,84,122,151,46)(32,47,152,123,85)(57,79,137,159,118)(58,119,160,138,80)(59,73,139,153,120)(60,113,154,140,74)(61,75,141,155,114)(62,115,156,142,76)(63,77,143,157,116)(64,117,158,144,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,109,159,44),(2,106,160,41),(3,111,153,46),(4,108,154,43),(5,105,155,48),(6,110,156,45),(7,107,157,42),(8,112,158,47),(9,61,86,136),(10,58,87,133),(11,63,88,130),(12,60,81,135),(13,57,82,132),(14,62,83,129),(15,59,84,134),(16,64,85,131),(17,140,148,36),(18,137,149,33),(19,142,150,38),(20,139,151,35),(21,144,152,40),(22,141,145,37),(23,138,146,34),(24,143,147,39),(25,55,65,114),(26,52,66,119),(27,49,67,116),(28,54,68,113),(29,51,69,118),(30,56,70,115),(31,53,71,120),(32,50,72,117),(73,122,103,95),(74,127,104,92),(75,124,97,89),(76,121,98,94),(77,126,99,91),(78,123,100,96),(79,128,101,93),(80,125,102,90)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112),(113,115,117,119),(114,116,118,120),(121,123,125,127),(122,124,126,128),(129,131,133,135),(130,132,134,136),(137,139,141,143),(138,140,142,144),(145,147,149,151),(146,148,150,152),(153,155,157,159),(154,156,158,160)], [(1,51,132,101,33),(2,34,102,133,52),(3,53,134,103,35),(4,36,104,135,54),(5,55,136,97,37),(6,38,98,129,56),(7,49,130,99,39),(8,40,100,131,50),(9,89,22,105,65),(10,66,106,23,90),(11,91,24,107,67),(12,68,108,17,92),(13,93,18,109,69),(14,70,110,19,94),(15,95,20,111,71),(16,72,112,21,96),(25,86,124,145,48),(26,41,146,125,87),(27,88,126,147,42),(28,43,148,127,81),(29,82,128,149,44),(30,45,150,121,83),(31,84,122,151,46),(32,47,152,123,85),(57,79,137,159,118),(58,119,160,138,80),(59,73,139,153,120),(60,113,154,140,74),(61,75,141,155,114),(62,115,156,142,76),(63,77,143,157,116),(64,117,158,144,78)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

C42.D5 is a maximal subgroup of
C42.D10  C42.2D10  C42.7D10  C42.8D10  C42.3F5  D10.5C42  C42.243D10  D5×C8⋊C4  C42.182D10  D10.6C42  M4(2).22D10  Dic5.5M4(2)  D105M4(2)  C4×C4.Dic5  C42.7Dic5  C20.35C42  C42.187D10  C42.47D10  C42.48D10  C42.51D10  C42.210D10  C42.56D10  C42.59D10  C42.62D10  C42.64D10  C42.65D10  C42.68D10  C42.70D10  C42.71D10  C42.72D10  C42.74D10  C42.76D10  C42.77D10  C42.80D10  C42.82D10  C30.22C42  C42.D15
C42.D5 is a maximal quotient of
C42.279D10  C20.45C42  (C2×C20)⋊8C8  C30.22C42  C42.D15

52 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H5A5B8A···8H10A···10F20A···20X
order122244444444558···810···1020···20
size1111111122222210···102···22···2

52 irreducible representations

dim11111222222
type++++-+
imageC1C2C2C4C4D5M4(2)Dic5D10C4×D5C4.Dic5
kernelC42.D5C2×C52C8C4×C20C52C8C2×C20C42C10C2×C4C2×C4C4C2
# reps121842442816

Matrix representation of C42.D5 in GL4(𝔽41) generated by

9000
0900
001835
00623
,
1000
0100
00320
00032
,
40100
33700
0001
00406
,
40100
0100
003735
00114
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,18,6,0,0,35,23],[1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,32],[40,33,0,0,1,7,0,0,0,0,0,40,0,0,1,6],[40,0,0,0,1,1,0,0,0,0,37,11,0,0,35,4] >;

C42.D5 in GAP, Magma, Sage, TeX

C_4^2.D_5
% in TeX

G:=Group("C4^2.D5");
// GroupNames label

G:=SmallGroup(160,10);
// by ID

G=gap.SmallGroup(160,10);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,55,86,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^2=b,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C42.D5 in TeX

׿
×
𝔽